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An Introduction to Al
and
Deep Learning

John Hopcroft
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The information revolution

* Machine learning is an important driver of the
information revolution that is changing our
world.

 Deep learning is an important aspect.

e This talk will give a short introduction to
machine learning and then explore some
interesting research in deep learning.



Threshold logic unit
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data aq.ao, .. .. 1y, [, = +1

Algorithm

Set w = (0
Until all patterns classified correctly

If a; not classified correctly w = w + «a;l;

End

Note: Weight vector is a linear combination of
the patterns
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Linearly separated data
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What if data is not linearly separable?
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Solve problem in higher dimensional space



Map problem to higher dimensional
space where the data is linearly
separable




(1 —f—> fla;)

Mapping may be to an infinite dimensional
space.

Do not need to compute images of patterns
in the higher dimensional space.

Only need the products of the images of the
patterns.



(1 —f—?* fla;)

n

W — Z r_’:.if(fl-i)

=0

n If one knows the
wf(a;) = Z cifla;) f(a;) products of images
1 e they do not need to
Products know the images.

w — w + f(a;)

Just increase the coefficient ¢; of f(a;).
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Kernels

K = where k;; = f(a;)f(a;).

GGiven a matrix /A does there exist a function f such

that k@_j — f(a,)f(aj.)?

Beijing Normal University, July 2018
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GGiven a matrix /A does there exist a function f such

that }’Ji'_j — f(as)f(aj.)?

There exists a function f if and only if A is a positive semi definite
matrix.

For all . 2T Ka > 0.
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Kernel matrix

(Gaussian kernel f Vij

Beijing Normal University, July 2018
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Support vector machine

Kernels and mapping to higher
dimensional space is the essence of

support vector machines.

There exist many kernels such as the
Gaussian kernel.

The next advance is in deep learning.



Advent of deep learning



Image net competition

1.2 million images, 1,000 categories

Beijing Normal University, July 2018
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Something new is happening

ImageNet competition 1.2 million images,
1,000 categories

2011 error rate 25%

2012 Alexnet error rate 15%

2013 Zfnet  error rate 14.8%

2014 GoogleNet error rate 6.67
2015 ResNet error rate 3.57%

Human error rate 5% with training



Supervised learning

Softmax » classification
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Unsupervised learning
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Convolution level
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Convolution levels

Fully connected levels

Softmax
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Activation space

* Activation vector

Beijing Normal University, July 2018
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Activation space

1mages

» neuron activation vector

neurons

*1mage activation vector
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image space

activation space
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Image from activation vector
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Changing young to old

Jacob R. Gardner*, Paul Upchurch*, Matt J. Kusner, Yixuan Li, Kilian Q.
Weinberger, Kavita Bala, John E. Hopcroft

Beijing Normal University, July 2018
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Chinese Painting Meets
Cornell Campus

* Top left: Elegant photo taken by Parvez Sukheswalla.

* Bottom left: Guanzhong Wu, Bridges, 1985. Beijing Normal University, July 2018
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演示者
演示文稿备注
To begin with, let's enjoy the picturesque landscape of Cornell campus. It is so beautiful and I love it. The second picture is Jiangnan by Guanzhong Wu, who is widely recognized as a founder of modern Chinese painting. The style of Jiangnan is unprecedented, let's call it Jiangnan Style.
And what if I want to create a piece of art with Jiangnan Style? See, with the power of convolutional neural network, we can easily make it. Knowing nothing about Chinese painting, our neural network mimics the style for me. More surprisingly, though there is no tree or grass in Jiangnan Style, our neural network can figure out how to paint them automatically.


http://eccentric.mae.cornell.edu/%7Epss93/cornell.html
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Style transfer on untrained deep networks

style1 style2 photo style3 styled style5

= et
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random original

pretrained

[Kun He, Yang Wang, John Hopcroft, NIPS 2016] A Powerful Generative Model
Using Random Weights for the Deep Image Representation.
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Some research questions

What do individual gates learn?

How does what the second level gates learn differ
from what the first level gates learn?

How does what a gate learns evolve over time?

Train with two different sets of starting weights.
Do gates learn the same things?

Train two networks with different sets of
photographs. Do early gates learn the same
things?



Do two gates learn the same thing?

Consider two gates a; and q;

[H'i'.imagf - H-;i](:ﬂj_.image — Yy )

covarlance(a;, a;) = Z
d;0;

Images ]
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Do two gates learn the same thing?

Gates
in
network
2

coONO UL WN -

0.0304
0.0036
0.0227
-0.0062
-0.0177
-0.0124
0.0046
-0.0537

-0.0108
0.0069
-0.0072
0.0032
0.0748
0.0076
0.0034
-0.0636

Gates in network 1

-0.0296
0.0227
0.1090

-0.0007

-0.0332
0.0332

-0.0301
-0.0759

4 5 6

-0.0214 -0.0576 0.0072
0.0011 -0.0061 -0.0130
-0.0110 0.0415 -0.0135
-0.0362 0.0604 0.0037
-0.0533 -0.0397 0.0179
0.0314 0.0348 -0.0305
0.0390 -0.0298 0.0137
0.0419 -0.0746 0.0019

-0.0493 -0.0162
0.0097 -0.0220
0.0136 0.2901
0.0536 0.1028
-0.0204 0.0610
0.0296 -0.0003
0.0103 -0.0365
0.0518 -0.0629



Matching gates in two networks
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Training a deep network

e Many local minima
e Some are better than others.

* Training takes a long time, can we possibly
speed it up?



Multiple local minima
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Broad minima seem to be better.
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Versions of gradient descent
J(w) = -mtgn ( Z {.’T‘T‘GT‘{H.','li'r?'.i"i-l'.’f-griﬁ’})

images

Gradient descent

w4+ w— VJ(w)

Stochastic gradient descent
One image at a time

Small batch of images



Gradient descent

Error \/

Weights

Error function for a single image. Actual error function is
the sum over thousands of single image error functions.
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Learning two tasks separately

Beijing Normal University, July 2018
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What is common to the two tasks?

Beijing Normal University, July 2018 45



Learn one task first and then another
or learn both together

e If we learn one task first and then add an
additional task are the two tasks in different
regions of activation space?

e |If we learn them together do they share the
same region in activation space?



Generative Adversarial Networks

Image
' —_—
generator :
synthetic
image
real discriminator

Image




Automatic language translator

translate "~

to German ~
discriminator >

_translate ,f

to English -

First train the discriminator to determine if a sentence is
a real sentence in German as opposed to a synthetic

sentence.

Then train a translator for English to German and a
translator from German to English.



Compression
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Learning from a single image
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Beijing Normal University, July 2018
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Fooling deep learning

Cat Automobile

Beijing Normal University, July 2018 52
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Is Artificial Intelligence Real?

No!

At the current state artificial intelligence is
pattern recognition in high dimensional space.

Al programs do not extract the essence of an
object and understanding its function or other
Important aspects.

Another revolution in 40 years may accomplish
that.



s artificial intelligence real?

Boston&Maine
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Computing power

Not all intelligent-like tasks need Al.
Some just need computing power and access to large data.

Chess
Tree of board

positions
given move
in chess

Computers are doing more and more things that one
thought required intelligence.



Thank you
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